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Abstract—We consider the first mixed problem for the Vlasov–Poisson equations with an external
magnetic field in a half-space. This problem describes the evolution of the density distributions of ions
and electrons in a high temperature plasma with a fixed potential of electric field on a boundary. For
arbitrary potential of electric field and sufficiently large induction of external magnetic field, it is
shown that the characteristics of the Vlasov equations do not reach the boundary of the halfspace. It
is proved the existence and uniqueness of classical solution with the supports of charged-particle den-
sity distributions at some distance from the boundary, if initial density distributions are sufficiently
small.
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1. INTRODUCTION
The Vlasov equations were first obtained in [1]. Now they are one of the best-known mathematical

models in the kinetic theory of gases including high temperature plasma. The study of these equations has
made it possible to predict a number of physical phenomena such as Landau damping effect [2]. For the
applications of Vlasov equations in physics, see [3] and the bibliography given there.

The majority of mathematical papers in the field of Vlasov equations are devoted to the Cauchy prob-
lem. The global solvability of the “smoothed” Vlasov equations was investigated in the papers of Braun
and Hepp [4], Maslov [5], and Dobrushin [6].

The existence of a global generalized solution of the Cauchy problem for the Vlasov–Poisson equations
was proved by Arsen’ev [7]. The existence of a global generalized solution and its weak stability in the
case of the Cauchy problem for the Vlasov–Poisson and the Vlasov–Maxwell equations were studied in
[8–12].

The existence and uniqueness of a classical solution of the Cauchy problem for the Vlasov–Poisson
system with small time or small initial data was proved by Arsen’ev [13] and Bardos and Degond [14].
Global classical solutions of the initial problem for the Vlasov–Poisson equations were studied in [15–21].
The Landau damping effect was studied in [22, 23].

Much less attention has been paid to the existence of solutions of the Vlasov equations in domains with
boundary. The studies here have been mostly focused on generalized solutions of mixed problems for the
Vlasov–Poisson equations and the Vlasov–Maxwell equations, see Arsen’ev [24], Weckler [25], and oth-
ers. The global existence of classical solutions of mixed problems for the Vlasov–Poisson equations in a
half-space with Neumann or Dirichlet boundary conditions for the electric-field potential and the con-
ditions of elastic reflection for charged-particle density distributions on the boundary was proved by Guo
[26], Hwang, and Velázquez [27]. The main difficulties in the study of classical solutions for these prob-

1The article was translated by the authors.
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lems have to do with the behaviour of the characteristics near the boundary. The existence of classical and
strong solutions of mixed problems in the general case is still an open problem, see Kozlov [11], Samarskii
[28], and Weckler [25]. This problem is relevant to the design of a controlled thermonuclear fusion reac-
tor, a mathematical model of which is described by mixed problems for the Vlasov system with respect to
the density distributions of charged particles of opposite signs in a bounded domain. The production of a
stable high-temperature plasma in a reactor requires that the so-called plasma column be strictly inside
the domain during some time interval in order to keep it away from the vacuum container wall [3, 29].

In this paper we consider the Vlasov–Poisson system of equations

(1.1)

(1.2)

Here  is the potential of the self-consistent electric field,  is the density distribu-
tion function of positively charged ions (for ) or of electrons (for ) at a point  with impulse  at
a time ,  and  are the gradients with respect to  and , respectively,  and  are the masses of
an ion and electron,  is the electron charge,  is the velocity of light,  is the induction of an
external magnetic field,  is the inner product in ,  is the vector product in , and

.
Assume that the following initial conditions hold:

(1.3)

where  are given nonnegative functions.
Suppose also that the function  satisfies the Dirichlet condition

(1.4)

Unlike other authors, we consider the solutions having supports of the charged-particle density distri-
butions, which lie at some distance from the boundary. To obtain such a solution we assume first that in
some layer the external magnetic field  is parallel to the boundary  and is sufficiently
strong, and second that the initial density distributions  have compact supports lying at some dis-
tance from the boundary. These assumptions imply that the characteristics do not intersect the boundary.
This phenomenon can be interpreted physically as follows: the charged particles do not reach the walls of
the vacuum chamber of the thermonuclear fusion reactor because they move along trajectories close to
the Larmor ones. According to [3], the presence of a considerable number of particles on the boundary
can result in either destruction of the reactor walls or in cooling of the high-temperature plasma due to its
contact with the reactor walls. In majority of thermonuclear fusion reactors an external magnetic field is
used as a control ensuring plasma confinement [3, 29]. As distinct from other papers (see, for example
[27]), which have dealt with the Vlasov–Poisson equations for particles of the same sign, we are concerned
here with those equations for a two-component plasma, since the word “plasma” is used in physics to des-
ignate this high-temperature state of an ionized gas with charge neutrality [3].

The paper is organized as follows. In Section 2 we introduce the notation and formulate the assump-
tions concerning the external magnetic field  and the initial density distributions . In Section 3 we
study the characteristics of system (1.2) in  for a fixed potential . If the magnetic field 
is sufficiently strong, we prove that the characteristics starting from some layer ,

, do not reach the boundary . This phenomenon is well known in plasma physics.
Charged particles are moving along trajectories, similar to circular or helical paths (so-called, Larmor tra-
jectories) with sufficiently small amplitudes. In Section 4 we consider estimates of characteristics deriva-
tives with respect to initial data and dynamics of supports for charged-particle density distributions. Sec-
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tion 5 is devoted to the estimates of norms for functions , where  is a
solution of problem (1.2), (1.3) with a fixed potential of electric field . In Section 6 for sufficiently small
initial density distribution functions we prove the existence and uniqueness of a classical solution to prob-
lem (1.1)–(1.4) with the supports, which lie at some distance from the boundary. We note that the Vlasov–
Poisson equations for a two-component plasma with external magnetic field in a half-space and in a cyl-
inder were studied in [30–32]. In contrast to these papers we obtain explicit upper bound for the norms
of initial density distributions providing the existence and uniqueness of a classical solution to prob-
lem (1.1)–(1.4).

2. NOTATION. THE MAIN RESULT

2.1. Denote by  , , , the Hölder space of continuous functions in  ,

having continuous derivatives in   up to the th order, , with the finite norm

(2.1)

where

(2.2)

Let  and .

Similarly we can define the space  of bounded continuous functions with bounded

continuous first order derivatives in .

Remark 2.1. If , , and , then we can endow  (respectively, )
with the equivalent norm

, (2.3)

where

(2.4)

and ,  does not depend on .

Remark 2.2. For any , the spaces  and  are Banach spaces. If , ,

and , then the space   is not separable, and the set of infinitely differentiable

functions in  with finite norm  is not dense in  ( ).

Let  with  denote the space of -times continuously differentiable functions on  hav-
ing compact supports.
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Denote by  the space of vector-valued functions  having coordinates 
with the norm

(2.5)

We introduce the Banach space , , of continuous functions

 with the norm

(2.6)

Similarly we can define the space , where ,

 is a bounded domain.

We also consider the Banach space , , of the Lebesgue measurable functions

 with the norm

(2.7)

Let , , . Clearly,  is a complete

metric space with metric .

Let , , , and  .

In what follows, , , ,  are positive constants.
2.2. We now formulate the conditions which the magnetic field  and the initial charged-particle den-

sity distributions  must satisfy.

Condition 2.1. Let  and let  for , where

(2.8)

 do not depend on , , and  is the nondecreasing func-
tion given by
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Denote

(2.11)

where  are such that , .

Condition 2.2. Let , and let .

Definition 2.1. A vector-valued function  with  and 

 is called a classical solution of problem (1.1)–(1.4) if 

, where  is a bounded domain, ,  as  for any ,

and  satisfies equations (1.1), (1.2), the initial conditions (1.3) and boundary condition (1.4).

3. TRAJECTORIES OF CHARGED PARTICLES IN MAGNETIC FIELD

3.1. Assume that Conditions 2.1 and 2.2 are satisfied. Given a fixed function , Eq. (1.2) with
initial condition (1.3) can be solved using the method of characteristics. To this end, we consider the fol-
lowing system of ordinary differential equations:

(3.1)
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with initial conditions
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where , .

Since ), from the theorem on non-continuable solutions it follows that for any
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We introduce the matrix

A multiplication by the matrix  corresponds to rotation by the angle  in a plane. The following
statement allows to apply properties of this operator to the investigation of trajectories of charged particles
in the presence of the Lorentz force in (3.2).

Lemma 3.2. The matrix  has the following properties:
(a) , ;

(b) , , ;

(c) , ;

(d) , , ;
(e) .
Proof. Properties (a)–(d) are evident.
Let us prove property (e). Clearly
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By virtue of Condition 2.1, we can rewrite equation (3.2) in the form

Hence

Multiplying the last equation by , we obtain
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Using Lemma 3.2(e) and integrating (3.13) from 0 to , , we have
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On the other hand, using again Lemma 3.2(c), we see that

Then similarly to (3.15) we have

(3.16)

From (3.12), (3.14)–(3.16) it follows that

(3.17)
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Similarly to Lemma 3.3 we can prove the following statement.

Lemma 3.4. Let Condition 2.1 hold. Then for any  a solution ,  of

problem (3.1), (3.2), (3.19), (3.20) on the interval   has the following properties:

if , , and , then ,  and

 for all .

Corollary 3.2. Let Condition 3.1 hold. Then for any , , , and , we
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Proof. Let . The variational equations for system (3.1), (3.2) have the form
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(4.6)

By virtue of (3.19), (3.20) with  and , the initial conditions for system (4.4), (4.5) will take
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Proof. It is sufficient to show that . By virtue of Condition 2.2 . We

prove that . Let . Then from Lemma 3.3 it follows that .

By assumption . Therefore, since  ( ), from (3.1) we obtain

Let Conditions 2.1 and 2.2 hold.

We define the function  by the formula
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where  is the constant from Lemma 4.1. Therefore we obtain

(5.4)

Integrating (5.4), we obtain (5.1).

Lemma 5.3. Let Conditions 2.1 and 2.2 hold. Then, for any  and , we have
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We introduce the new variables ,  and define , ,
. Then from inequalities (5.10), formula (2.10) for  and , and the Gronwall lemma we derive

the following inequality:

(5.11)

where  does not depend on , .

Putting  in (5.11), we have

(5.12)

From inequalities (5.6) and (5.12) it follows that
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2. Let , where , and the function  is defined at the points ,
. For any domain  denote , . From (4.1) and (4.9) we

have
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Therefore, using Remark 4.1 and the Taylor formula, we obtain
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where

Let us estimate . By virtue of inequality (5.11) and Lemma 4.1, we have
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To estimate the right-hand side of (5.17), we apply the operator  to both parts of system (5.8), (5.9).
Then we have

(5.18)

where

From (5.11), (4.8) and Lemma 3.4 we obtain
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where  does not depend on  and .
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where  does not depend on  and . Changing the variables in (5.21) and
using the Gronwall lemma, similarly to (5.11) we obtain

(5.22)

where  does not depend on  and .
Inequalities (5.15)–(5.17) and (5.22) imply that

(5.23)

where  does not depend on  and .
From (5.13), (5.23) and Remark 2.1 we obtain (5.5).

6. EXISTENCE AND UNIQUENESS OF CLASSICAL SOLUTION
6.1. First we consider the auxiliary problem

(6.1)

(6.2)

Let  as .

Lemma 6.1. Let  be a bounded domain, and let . For any , there exists a

unique solution  of problem (6.1) (6.2), and

(6.3)

where  does not depend on .
For a proof, see Lemma 5.3 in [31].
6.2. Now we can formulate the main result of this paper.
Theorem 6.1. Let Conditions 2.1 and 2.2 hold. Assume also that the following inequality is fulfilled:

(6.4)

where  are constants from Lemmas 5.2, 6.1 with .

Then there exists a unique classical solution of problem (1.1)–(1.4) such that  and

 for all .
Proof. 1. For each function , we denote by  a classical solution of problem (6.1), (6.2)

with , where the function  is given by (4.11). By Lemmas 4.2 and 5.1,

. Therefore Lemma 6.1 implies that . Denote  by .
By assumption, . Hence, by virtue of (5.1) and (6.3), we have
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2. In the complete metric space  we introduce the equivalent metric given by
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From Lemmas 6.1 and 5.3 it follows that
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Clearly,

Therefore, multiplying (6.6) by  and taking the supremum as , we obtain

Let . Then we have

(6.7)

From (6.5) and (6.7) it follows that the operator A:  has a unique fixed point

. Thus problem (1.1)–(1.4) has a unique classical solution , where  is a fixed point of 

and  is given by (4.10). From Lemma 4.2 we obtain  for all .
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